본문 바로가기

회귀2

완전 초짜 ORANGE 3 : 지도학습 모델 평가(회귀편) -범주형 데이터의 경우 분류를 활용하기 때문에 전 포스팅에서 보았던 분류 모델들을 활용하면 된다.(k-NN / Tree / Logistic Regression / 등) -그러나 수치형 데이터(Numeric)를 지도학습 하기 위해선 회귀분석을 주로 사용한다. -방법은 다를게 하나도 없다. 위 그림의 지도학습 부분에 회귀분석 모델을 사용하면 된다. 나머지 부분을 동일하게 진행된다. -한 가지만 더;;^^ 모델 성능을 평가하는 지표들도 살짝 달라지게 되는데... ▷회귀분석 모델 평가 -회귀분석의 모델을 평가하는데 필요한 지표들을 알아보자. -MAE : (예측값 - 실측값) 의 평균 / Mean Absolute Error -MSE : (예측값 - 실측값)2 의 평균 / Mean Square Error -RMSE.. 2021. 8. 31.
완전 초짜 ORANGE 3 : 지도학습 모델 평가 ▷ 지도학습 방법 : 4. 최적화 모델 선택 배경 어떤 모델이 가장 최적의 모델인지 선택하기 위해서는 분류모델의 성능을 평가하는 지표(score)를 알아야한다. 이때 가장 기본이 되는 것이 이다. TP는 맞다고 예측하고 실제로도 맞은 경우 / FN은 맞다고 예측했는데 아닌 경우 / FP는 아니라고 예측했는데 맞은 경우 / TN은 아니라고 예측했는데 아닌 경우이다. 즉 TP/TN은 높을수록 FP/FN는 낮을수록 성능이 좋은 모델이다. 이를 바탕으로 분류 모델의 성능을 평가하는 를 산출할 수 있다. 정밀도 / 정확도 / 재현율 / F1 점수가 여기에서 나온다. 모델의 성능을 평가하기 위해선 한가지 더 알아야하는게 있다. 위의 그래프를 ROC 곡선이라고 한다. 이는 민감도(TPR)와 거짓참판정 비율(FPR)을.. 2021. 8. 30.